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This paper describes an algorithm for detecting the occurrence of events, which signify discontinu-
ities in the first derivative of the state variables, while simulating a set of non-smooth differential
equations. Such combined-discrete continuous systems arise in many contexts and are often re-
ferred to as hybrid systems, switched systems, or non-smooth systems. In all cases the state
events are triggered at simulated times which generate states corresponding to the zeros of some
algebraic “event” function. It has been noted that all existing simulators are prone to failure when
these events occur in the neighborhood of model singularities – regions of the state space where
the right-hand side of the differential equation is undefined. Such model singularities are often
the impetus for using non-smooth models in the first place. This failure occurs because exist-
ing algorithms blindly attempt to interpolate across singular regions, checking for possible events
after the fact. The event detection algorithm described here overcomes this limitation using an
approach inspired by feedback control theory. A carefully constructed extrapolation polynomial is
used to select the integration step size by checking for potential future events, avoiding the need
to evaluate the differential equation in potentially singular regions. It is shown that this alternate
approach gives added functionality with little impact on the simulation efficiency.

Categories and Subject Descriptors: I.6.8 [Simulation and Modeling]: Types of Simulation–

combined discrete-continuous

General Terms: Algorithms

Additional Key Words and Phrases: Hybrid systems, model singularities, event detection, numer-

ical integration, discontinuities

1. INTRODUCTION

Many engineering systems are described by sets of differential equations with dis-

continuous right-hand sides. A very basic example is as follow. For x : t ∈ R+ →
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2 · J.M Esposito and V.Kumar

x(t) ∈ RN , we have

ẋ =
dx(t)

dt
=





f1(x), if g1(x, t) < 0

f2(x), if g2(x, t) ≡ −g1(x, t) ≤ 0,
(1)

where g1(x, t) = −g2(x, t) ensures the conditions are mutually exclusive, although

significantly more complex switching structures are permitted. When the algebraic

event function gi(x(t), t) (also called a guard or discontinuity function) changes

signs an event occurs, causing a discontinuity in the first derivative of the state

as the derivative definition f i(x) switches values of the discrete variable, i = 1 to

i = 2. The abrupt switches in i resemble discrete-event systems, while the dynamics

of x are governed by continuous differential equations. Such systems arise in many

contexts such as contact mechanics, phase transition and failure mode simulation,

and are often referred to as combined discrete/continuous dynamic systems, hybrid

systems, switched systems, or simply non-smooth systems. Of particular interest

is the fact that physical systems controlled by embedded microprocessors can be

modelled in such a fashion (see Tomlin and Greenstreet [2002] and others in that

series).

It has been shown [Cellier 1979] that the proper method of simulating such sys-

tems is through the discontinuity locking approach, which requires the definition of

the derivative remain “locked” during each integration step. After a step is taken,

it must be determined if it is possible that gi(x, t) changed sign on the integration

interval. If so, the precise time, t∗, at which the event occurred must be deter-

mined ( i.e., gi(x(t∗), t∗) = 0) so that the integration process can be restarted using

the new function for the derivative, using x(t∗) as the initial condition. Failure to

properly detect and locate events can have disastrous ramifications on simulation

fidelity [Branicky 1995], and the ability to detect events accurately is a key at-

tribute of quality simulators [Mosterman 1999]. Unfortunately the event detection

problem is symbolically undecidable [Ruohonen 1994]. The problem is also hard

computationally [Shampine et al. 1991].

The algorithm in this paper addresses a subtle but potentially disastrous short-

coming of even the best existing algorithms. Even the most sophisticated class of

methods (which we collectively term interpolation-based methods) fail to localize

an event which occurs in the neighborhood of a model singularity – a region of

the state space where the derivative function f i(x, t) is undefined. To quote from
ACM Journal Name, Vol. V, No. N, Month 20YY.



Event Detection For Systems With Model Singularities · 3

Park and Barton [1996]: “(the discontinuity locking) . . . approach has been demon-

strated to be both efficient and correct provided the system of equations employed

before the state event is mathematically well behaved in a small interval following

the event, even if the solution is not physically meaningful.” In this paper we intro-

duce an event detection scheme which overcomes these pitfalls by using carefully

crafted extrapolation polynomials along with control-theoretic techniques to select

the integration step size based on proximity to the event surface. The algorithm

possesses the special property that it only approaches the switching surface from

one side. This ensures it never accidentally evaluates the model at a singularity.

It is shown here that this alternate approach gives added functionality with little

impact on the simulation efficiency.

Differential equations in which the domain of the right hand side of the ODE is

not all of RN appear in a variety of contexts in which the state space of a dynamical

system is a manifold with boundary. In certain situations, the vector field is not

defined everywhere because the model was only designed to be applicable in certain

regions of the state space. For example, in an aerial vehicle model it may not be

possible to evaluate the supersonic aerodynamic model at sub-sonic velocities. In

other situations the singular region is not a modelling artifact but rather dictated by

the physics of the problem. For example in chemical reaction problems, where the

state variables are the concentrations of various chemical species, negative values of

the state are physically meaningless but may be introduced due to numerical errors

in the simulation. Similar situations arise in problems where phase transitions

occur. Finally, in feedback control systems, the control law itself may be constructed

in such a way that it cancels or inverts the nonlinear dynamics of the system. Such

controllers are known to have singularities in regions of the state space where the

dynamics are not invertible, in which case the control computer should switch

to a different feedback law in this region. An example of such a controller is

one which depends on the results of an inverse kinematics solver for a robot arm.

If the requested end-effector configuration is infeasible, a solution for the inverse

kinematics does not exist. Other controllers which rely on inverting the Jacobian

are inapplicable at singular configurations inside the workspace. In general any

differential equation whose right hand side involves a square root, logarithm, inverse

trigonometric function, or division by a state variable will posses a singularity.
ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · J.M Esposito and V.Kumar

Such events are often referred to as unilateral events, meaning that they should be

detected without actually allowing the simulation to progress to the point where

the state variable crosses the event surface.

In Section 1.1 we establish notation and provide some background on the problem.

In Section 1.2 we examine other event detection algorithms and their shortcomings

in more detail. In Section 2, we present an overview our algorithm. Section 3

presents three example problems which demonstrate the method’s effectiveness,

robustness, and efficiency, respectively. Concluding remarks are presented in Sec-

tion 4.

1.1 Notation and Background

Formally, assume the state x ∈ X ⊂ RN and that t ∈ R+. The ith definition of

the derivative f i(x) is defined for x ∈ X i ⊂ X as f i : X i → RN , and is continuous

in x ∈ X i. It is assumed that the function gi : X i × R+ → R is smooth in x

and t. Initially i is set such that gi(x(t0), t0) < 0. The state evolves according to

ẋ = f i(x) until gi(x, t) ≥ 0, which means the value of i changes to i′ according to

the switching structure the model possesses. Once i changes to i′, a new definition

for ẋ must be used, f i′(x), and a new event function gi′(x, t) is employed. We

refer to each value of i, and the associated f i and gi as a system mode. Although

various formalisms, such as hybrid automata, for modelling such systems exist, we

prefer to use the general notion introduced here to emphasize that our simulation

technique is applicable to any system with this structure. Throughout this paper

we refer to any state/time pair x, t such that gi(x, t) = 0 as an event. We refer to

gi(x, t) as the event function. For a given value of t, the level set defined as the set

of all x ∈ X i such that gi(x, t) = 0 is called the event surface.

For the remainder of this paper we will discuss numerical integration schemes

based on difference equations that produce estimates of the state at a discrete set

of times tk, k = 0, 1, 2, . . . . We say that the subscript k indexes the iteration

number. Let the integration step size be defined as hk+1 = tk+1 − tk. For clarity

xk = x(tk) and fk = f(xk) and gk = g(xk, tk).

Almost all of the algorithms reviewed in the following section are loosely based

on the discontinuity locking approach [Cellier 1979] combined with the use of in-

terpolation polynomials (we refer to them as interpolation-based methods) so it is

important to understand the basic high-level outline of these algorithms (see Fig-
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 1. The traditional simulation algorithm. The event dynamics are not used to select the step

size for the next iteration.

ure 1), to understand why they fail in the neighborhood of model singularities.

During the kth simulation iteration the algorithm:

1. integrates the current state estimate xk, using f i(x), through a time step hk+1,

producing a new state estimate xk+1;

2. constructs a polynomial P i
k(h) which interpolates the event function gi(x(tk +

h), tk + h) over h ∈ [0, hk+1], whose accuracy is on the same order as the

underlying integration algorithm;

3. determines if P i
k(h) has roots in the interval, if so computes the smallest positive

root h∗, implying gi(x(tk + h∗), tk + h∗) = 0;

4. if no real positive roots exist, k = k + 1 and the integration continues in Step

1. Else, an event has occurred, the algorithm updates i → i′, switches the right

hand side of the ODE to f i′(x), the event function to gi′(x, t), and restarts

integration using x(t∗) where t∗ = tk + h∗ as the new initial conditions.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Note that the integration is performed first, without any consideration to the

value of the event function or proximity to the boundary of X i, typically only

truncation error estimates are used to select hk+1. Therefore if at the beginning

of an iteration the state is close to the boundary of the domain of f i(x, t) it is

entirely possible for Step 1 to generate a state, xk+1, which lies outside the domain

of f i(x) – a potentially singular region. Because most integration methods evaluate

the derivative of the state at the integration interval endpoint, the simulation will

crash before ever reaching Steps 2 and 3, where event considerations come into play.

Therefore regardless of the level of sophistication used to perform Steps 2 and 3,

the algorithm is doomed to failure in such a situation.

1.2 Related Work

The first to note that events whose event function depend on the state of the system

warrant special treatment was Cellier [1979], who also introduced the discontinuity

locking approach still used today in nearly all the work mentioned in this section.

The first work to notice that the rate of change of the event function along the flow

field, was a critical quantity in event detection was Carver [1978]. This derivative

is defined as

dgi

dt
≡ ∂gi(x, t)

∂x
· f i(x) +

∂gi(x, t)
∂t

∣∣∣∣
(x,t)=(xk,tk)

, (2)

where (·) denotes the dot product of two N -dimensional vectors defined in the usual

sense. The idea of differentiating the event function and appending it as an extra

state variable to be integrated, thus rendering a new event function which is linear

in the extended state, was introduced there as well. However, in these early works

as well as in Hay and Griffin [1979], Joglekar and Reklaitis [1984], and Prestin and

Berzine [1991], events were detected by simply looking for sign changes in the event

function (or perhaps its derivative) after integrating through one time step. As a

result they may fail to detect an event when multiple sign changes of the event

function occur in the course of a single simulation step.

Recent methods emphasize guarantees that all events in a given time step are

properly detected using interpolation polynomials. The fact that interpolation poly-

nomials can be generated for the event function dynamics as a by-product of the

integration process was first exploited in Shampine et al. [1991]. Using these inter-

polants, they are able to correctly identify even multiple event occurrences using
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Strum sequences so long as the guards are polynomial expressions. However, this

information is not used to select step sizes. This technique is the first method which

can be demonstrated to be “correct”; meaning it is capable of detecting multiple

events in a given integration interval. More recently, in Park and Barton [1996]

some of these ideas are combined and methods from interval arithmetic are used to

create efficient “exclusion tests.” Exclusion tests are designed to determine if it pos-

sible that a polynomial has a root in a given interval using minimal computation.

They are guaranteed to not return false negatives so any interval which passes the

test may be removed from further consideration, while intervals that do not pass

they test are subject to further scrutiny (and computation time) to determine the

location of the potential roots. This event detection method seems to be the most

reliable technique in the literature to date, and it is streamlined and well suited

to stiff problems or differential algebraic equations. This work represents a much

more computationally efficient variant of the algorithm in Shampine et al. [1991],

targeted at improving the robustness of differential algebraic equation simulation.

Similar work, such as Bahl and Linninger [2001], focused on developing other ex-

clusion tests. Again, each of these methods fails to locate events which are close

to model singularities because they attempt to evaluate the right-hand side of the

differential equation before determining if an event (or singularity) has occurred.

In related but orthogonal work Esposito and Kumar [2004] address reliable event

detection for so-called multi-agent systems. There the emphasis is on improving

computational efficiency of large-scale simulations through asynchronous integra-

tion schemes. We note that some of the step-size selection techniques used here are

inspired by analogies to automatic feedback control systems, where proximity to the

event surface is treated as an output variable. In a similar vein Gustafsson [1994]

introduces a control theoretic step size selection scheme in which the truncation

error is treated as an output variable.

2. A NEW EVENT DETECTION ALGORITHM

In contrast to the approach outlined above, which integrates first and looks for

events using an interpolant afterward, the approach advocated here is as follows.

At the kth iteration:

1. Construct a polynomial P i
k(hk+1), whose accuracy is on the same order as the

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Estimate error Err

Yes

No

Yes

No

Initialize 0k
0 0, ,x t

0 ,h iGiven

Adjust

Step size?

Update k

Reduce 

Step size

err

h

Err

Extrapolation 

polynomial
( )i

kP h

0 1

0 1,

k

k

t t

x x 0h

0,k

Event!  Re-initialize

Smallest

Positive real root?
*( ) 0i

kP h

Corrector 1kx

Predictor
1

p

kx

*h

Compute step size
* err min

1 max(min( , ), )kh h h h

Event?
No

Yes

errh

switch

' ',i ig f

'i i

Fig. 2. The new simulation algorithm introduced in this paper. The extrapolation polynomial

enables the computation of a step size based on proximity to the event surface.

underlying integration algorithm, that extrapolates the event function gi(x(tk +

hk+1), tk + hk+1) over hk+1 ∈ [0,∞).

2. Determine if the extrapolation polynomial P i
k(hk+1) has a positive real root h∗

– corresponding to an event; if so, compute the smallest such root h∗. If no

positive real roots exist, h∗ = ∞. In addition, a traditional algorithm can be

use to select a step size, herr, based on truncation error estimates.

3. Integrate the state xk through a step hk+1 = min(h∗, herr) producing xk+1.

4. if an event occurred, gi(xk+1, tk+1) = 0, update i → i′, switch the right-hand

side of the ODE to f i′(x) and event function to gi′(x, t) and restart integration

using x(tk+1), where tk+1 = tk + hk+1, as the new initial condition.

Graphically the algorithm is depicted in Figure 2. In the remainder of this section

we show how to construct the polynomial in Step 1, and present the algorithm in
ACM Journal Name, Vol. V, No. N, Month 20YY.
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detail.

2.1 Preliminaries

Because the mode remains fixed during a given integration step we replace gi(x, t)

and f i(x) with g(x, t) and f(x) for the purpose of streamlining notation when

possible.

Since many models of interest are linear, we consider this to be the most impor-

tant class of event function. In addition, note that it is possible to transform any

nonlinear guard to a linear one by adding an extra state variable, z = g(x, t)




ẋ = f(x)

g(x, t) ≤ 0




↔





ẋ = f(x)

ż = ∂g
∂x · f(x) + ∂g

∂t

z ≤ 0.





(3)

In the remainder of this paper we assume the event function is linear unless other-

wise stated.

Regarding the selection of integration method, we cannot use a purely implicit

integration method because it requires evaluating f(x) at a possibly singular end-

point; on the other hand strictly explicit integration schemes are known to have

poor stability and accuracy. Instead our method of choice is the predictor-corrector

approach (see for example Benan et al. [1989]) since we can use the explicit pre-

dictor component to test for events and the semi-implicit corrector component to

improve stability and accuracy. For the predictor-corrector numerical integration

method, the predictor equation is

xp
k+1 = xk + hk+1{

m∑

j=1

βp
j (hk+1)fk−j+1}, (4)

the result of which is used in the corrector equation to generate xk+1

xk+1 = xk + hk+1{βc
0(hk+1)f(xp

k+1) +
m−1∑

j=1

βc
j (hk+1)fk−j+1}. (5)

Recall that the β’s are polynomial weighting functions in hk+1 in the case of non-

constant step sizes. Therefore the event dynamics after the predictor and corrector

phases are, respectively,

gp
k+1 = g( xk + hk+1{

m∑

j=1

βp
j (hk+1)fk−j+1}, tk + hk+1 ), (6)

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · J.M Esposito and V.Kumar

gk+1 = g( xk + hk+1{βc
0(hk+1)f(xp

k+1) +
m−1∑

j=1

βc
j (hk+1)fk−j+1}, tk + hk+1 ). (7)

Because the final value of gk+1 depends on the corrector dynamics which, in turn,

require evaluating f(x) at xp
k+1 (a potential singularity), we must base the compu-

tation of hk+1 on the predictor dynamics alone and hence eq. (6).

2.2 Constructing the Extrapolation Polynomial

Using a Taylor series expansion of the predicted event function eq.(6)

gp
k+1 = gk + hk+1

dgp

dt

∣∣∣∣
(x,t)=(xk,tk)

+
h2

k+1

2!
d2gp

dt2

∣∣∣∣
(x,t)=(xk,tk)

+ . . . , (8)

we can determine the value of gp
k+1 as a function of the, yet undetermined, step

size hk+1. Recalling that it was assumed that the event function is both linear in

t and x(t), we can neglect the second and higher order terms in the expansion. In

addition, the first-order partials of g(x, t) are constant everywhere so we drop the

designation of where they are evaluated. So, by the chain rule,

dgp

dt
=

∂gp

∂x
· ẋ +

∂gp

∂t
(9)

and, within the integration error tolerance, the predictor equation gives

ẋ ≈
m∑

j=1

βp
j (hk+1)fk−j+1. (10)

Therefore, utilizing the linearity assumption, and substituting eqs. (10) and (9)

into eq.(8),

gp
k+1(hk+1) = gp

k + hk+1





∂gp

∂x
·

m∑

j=1

βp
j (hk+1)fk−j+1 +

∂gp

∂t



 (11)

which determines gp
k+1 as a function of the step size, up to the integration error

tolerance.

Theorem 2.1. Selecting

hk+1 =
(γ − 1)gp

k
∂gp

∂x ·∑m
j=1 βp

j (hk+1)fk−j+1 + ∂gp

∂t

, (12)

where γ ∈ [0, 1), causes the event dynamics to behave like a stable linear system

which exponentially converges to the surface g(x, t) = 0; furthermore, if g(x0, t0) <

0 then g(xk, tk) ≤ 0, ∀k.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 3. The natural event dynamics as a function of time (left). After choosing hk+1 according to

eq.(12), the event dynamics as a function of the iteration number, k, have been reparametrized to

behave like a stable linear system (right).

Proof. Substituting eq. (12) into eq. (11), yields

gp
k+1(hk+1) = γgp

k. (13)

The solution to this difference equation is

gp
k = γkgp

0 . (14)

As long as ‖γ‖ < 1, gk → 0 as k → ∞. In addition γ ≥ 0, implies that gp
k does

not change sign. Therefore, assuming that g0 < 0 then gk ≤ 0, ∀k, ensuring that

the state never crosses over to the potentially singular region g(xk, tk) > 0, which

is the desired effect. Figure 3 illustrates the effect of this choice of step size.

Remark 2.2. Note that since βp
j on the right-hand side of eq. (12) is a polynomial

function of hk+1, solving for hk+1 requires a root finding algorithm and eq. (12)

is essentially an extrapolation polynomial, whose roots determine possible event

locations

P i
k(hk+1) = hk+1


∂g

∂x
·

m∑

j=1

βp
j (hk+1)fk−j+1 +

∂g

∂t


 + (1− γ)gp

k, (15)

Remark 2.3. Extending this method to non-linear event functions is straightfor-

ward when the event function has a Taylor series expansion of finite length (i.e.,

polynomials). Then hk+1 must be selected to cancel the higher order terms in the

expansion as well.

Remark 2.4. The method is easily extensible to Boolean combination of such

functions [Esposito 2002] (i.e., polyhedral and semi-algebraic sets).

ACM Journal Name, Vol. V, No. N, Month 20YY.
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Remark 2.5. Transcendental event functions are more difficult to deal with. An

exact cancellation of all higher order terms is not possible. Instead the dominant

terms can be cancelled, but the uncancelled higher order terms make it impossible

to guarantee g(xk, tk) ≤ 0 ∀k. In practice, a conservative value of γ (i.e. values

significantly greater than zero) can be used to mitigate the effect of the uncancelled

terms and improve performance.

Remark 2.6. It is interesting to consider an analogy to feedback control systems.

We consider the event function to be the output variable and the step size hk+1 to

be the input variable. Eq. (11) represents the dynamics of the system. Eq. (12)

represents a control law and γ is a “gain”. In this context h represents the speed

with which the state approaches the event surface. The technique employed is

similar to a nonlinear control technique called feedback linearization [Isidori 1995].

Note that in control system parlance, the control law produces a response with no

overshoot, meaning gp
k ≤ 0, ∀k.

2.3 Selecting γ

The rate at which the state converges to the event surface is determined by the

value of the gain, γ ∈ [0, 1). Values closer to zero produce rapid convergence while

values closer to one cause gp
k to approach zero more slowly. Note that if our only

goal was to drive gp
k → 0, in as few iterations as possible γ should be set to zero.

Instead we must drive the corrected value, gk+1 in eq. (7), to zero and, if we are

to avoid any possible singularities, ensure that gk+1 ≤ 0 ∀k. In this section we

introduce a method of selecting γ which leverages the existing truncation error

control mechanism.

While it is impossible to know the discrepancy between the predicted and cor-

rected state a priori, it is possible to compute bounds. Recall that the truncation

error control mechanism selects step sizes in such a way that the estimated inte-

gration error remains just below a user defined threshold. The error is estimated

using Milne’s method [Ascher and Petzold 1998]

Err ≈ C‖xp
k+1 − xk+1‖ (16)

where C is a known constant which is unique to the particular predictor-corrector

method. If ε is the user defined maximum error threshold, then a particular step is

accepted if Err ≤ ε and the integration proceeds. If instead Err > ε, the result is
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rejected, a smaller step size is used, and the state is recomputed. Thus one knows

that in any acceptable integration step

‖xp
k+1 − xk+1‖ ≤ (ε/C), (17)

which implies in the worst case

g(xk+1, tk+1) = g(xp
k+1 + (ε/C)û, tk+1), (18)

where û is some unknown unit vector in RN . Obviously, for linear guards, the

direction for û which produces the largest change in ‖g(xp
k+1, tk+1)−g(xk+1, tk+1)‖

is parallel to ∂g
∂x . Therefore, even if the dynamics of the corrector cannot be precisely

determined in advance, the following inequality holds

g(xp
k+1, tk+1)− (ε/C)‖∂g

∂x
‖ ≤ g(xk+1, tk+1) ≤ g(xp

k+1, tk+1) + (ε/C)‖∂g

∂x
‖, (19)

where the partial derivatives are evaluated at (x, t) = (xk, tk). Thus, (ε/C)‖ ∂g
∂x‖

is a natural bound on how accurately one can “control” g(xk+1, tk+1), and there-

fore represents the accuracy with which one can locate the event occurrence. Not

surprisingly this bound depends critically on ε, the user determined integration ac-

curacy. Some techniques claim to locate the event with greater precision; however it

is meaningless to locate the event within a tighter tolerance than the accuracy with

which state estimates are generated (the integration tolerance) [Shampine et al.

1991].

Given this bound, γ can be selected in such a way as to produce the fastest

possible convergence consistent with those bounds and the nature of the system

being simulated. We divide event detection tasks into three categories: unilateral

events, bilateral events, and accuracy critical events. This distinction has been

made elsewhere in the literature [Bahl and Linninger 2001]. The distinction is

a necessary one because it is impossible to locate the time at which g(x(t), t) =

0 precisely, due to the fact that simulations are computed with finite-precision

arithmetic.

Situations in which a model singularity exists, or in which the physics of the

problem dictate that the state should never cross the event surface fall into the

category of unilateral events. Indeed it is this class of events the method presented

here is targeted at; and it is also this class of events which solicits failure in tra-

ditional event detection techniques. It is possible to guarantee that gk+1 < 0, ∀k
ACM Journal Name, Vol. V, No. N, Month 20YY.
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locations
X_corr 
Possible 

G(X) =0

Guard
Region

X_k

X_{k-1}

X_pred

Radius =eps/C

Fig. 4. A graphical illustration of the selection of γ in eq.(20) for unilateral events. The corrected

state is guaranteed to lie within a circle of radius ε/C and therefore not cross the event surface.

(i.e. one-sided convergence) by selecting γ

0 ≤ −(ε/C)
‖ ∂g

∂x‖
gk

≤ γ < 1. (20)

This is illustrated geometrically in Figure 4. Using the linearizing step size in eq.

(12) along with the minimum value of γ prescribed by eq. (20), results in the

following guard dynamics

gp
k+1 = −

( ε

C

)∥∥∥∥
∂g

∂x

∥∥∥∥
∣∣∣∣
(x,t)=(xk,tk)

. (21)

According to eq. (19) this is the closest point to the event surface at which xp
k+1

can lie to be assured that g(xk+1) ≤ 0, if the integration is performed at tolerance

ε.

Remark 2.7. In applications in which no model singularities exist and the state

is permitted to possibly cross the event surface, accuracy and efficiency are the

chief concerns. Then γ = 0 produces the most rapid convergence. In other

applications where the state must cross the event surface in order to properly

trigger the event and prevent “discontinuity sticking,” an alternative selection is

γ = (ε/C)
‖ ∂g

∂x‖|(x,t)=(xk,tk)

gk
. This approach is similar in spirit to Park and Barton’s

“consistent event location” method, which insures events are properly triggered

by shifting the guard surface to the “right” of g = 0 by an amount equal to the

integrator’s truncation error tolerance.

2.4 Step Size Computation and Simulation Algorithm

Based on the developments in the previous sub-sections we present the proposed

simulation algorithm in detail here (see also Figure 2). In addition we present prac-
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Given x0, t0, h0, a minimum acceptable step size hmin, an initial value for herr, a

desired truncation error ε, an initial mode i and a termination time tfinal. Set k = 0.

repeat

Mode Set g(x, t) ← gi(x, t), f(x) ← f i(x)

Construct Extrapolation Polynomial

P (hk+1) = hk+1

0@ ∂g

∂x
·

mX
j=1

βp
j (hk+1)fk−j+1 +

∂g

∂t

1A+ (1− γ)gp
k

where γ = −(ε/C)
‖ ∂g

∂x
‖ |(x,t)=(xk,tk)

gk
.

Roots r = real positive roots of P (hk+1)

if r = ∅ then

h∗ = ∞.

else

h∗ = min(r).

end if

Select Step Size hk+1 = max[min(h∗, herr), hmin]

Predictor xp
k+1 = xk + hk+1{

Pm
j=1 βp

j (hk+1)fk−j+1}
Corrector xk+1 = xk + hk+1{βc

0(hk+1)f(xp
k+1) +

Pm−1
j=1 βc

j (hk+1)fk−j+1}
Estimate Error Err

if Err > ε then

Recompute herr, GOTO “Select Step Size”

end if

if g(xk+1, tk+1) ≥ −εg then

Event Reset t0 = tk+1, x0 = xk+1, k = 0, i = i′. GOTO “Mode Set”.

else

Update k + +, recompute herr

end if

until tk ≥ tfinal

Fig. 5. Extrapolation-based event detection algorithm for unilateral event functions.

tical considerations and an example which constructs an extrapolation polynomial.

We assume the user has subroutines capable of: estimating the truncation error;

selecting a step size, herr, based on this error; and solving for the roots of a poly-

nomial. We also assume the user employs some standard bootstrapping procedure

for estimating the previous m values of the state derivative during the initial m

iterations.

Note that since it is impossible to guarantee g(x, t) = 0 exactly, εg ≥ 0 is a user

defined termination tolerance. Also, note that the smallest positive real root of
ACM Journal Name, Vol. V, No. N, Month 20YY.
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the extrapolation polynomial, called h∗ determines the most imminent event and

should dictate the step size. If there are no positive real roots, h∗ = ∞, meaning

that for the purposes of event detection there is no upper limit on the step size.

However, in practice, event considerations are not the only criteria which determine

the appropriate step size to be used in simulation. Often the high-level simulation

algorithm will specify some minimum step size, hmin below which roundoff errors

interfere with the computation. In addition, most modern numerical integrators

estimate an ideal step size based on truncation error considerations, herr. The

reconciliation of these various possible step sizes is accomplished in the line titled

“Select step size”. The following example illustrates the construction of P i
k(hk+1),

by fully expanding β(hk+1) for a two step Adams method.

Example 2.8. Let the integration method be a two step Adams method, β1 =

(1 + hk+1)/(2hk) and β2 = −hk+1/(2hk). Substituting the expressions for β into

eq. (15) gives

P i
k(hk+1) = hk+1

([
fk

(1 + hk+1)
(2hk)

− fk−1
hk+1

(2hk)

]
· ∂g

∂x
+

∂g

∂t

)
+ (1− γ)gp

k.

Rearranging gives

P i
k(hk+1) = a2h

2
k+1 + a1hk+1 + a0

where

a2 =
1

2hk
[∂g/∂x · (fk − fk−1)],

a1 =
1

2hk

∂g

∂x
· fk +

∂g

∂t
,

a0 = (1− γ)gp
k.

Further, if g(x, t) = c0+c1 ·x+c2t, where c0, c2 ∈ R and c1 ∈ RN . Then ∂g/∂x = c1

and ∂g/∂t = c2.

3. EXAMPLES AND EXPERIMENTS

In this section we illustrate the operation of the algorithm and compare it to other

popular algorithms via three examples – each meant to illustrate a different at-

tribute of the method. All implementations described here were done in Matlab

6.1 on a 1GHz PC.

A common shortcoming of naive event detection approaches is their inability to

reliably detect events when the event function has an even number of sign changes
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Example 1 Example 2

Fig. 6. Examples 1 and 2: (left) an autonomous vehicle navigating a corridor; (right) a planar two

link robotic manipulator with workspace limitations. In the case of the vehcile, the state is (x, y),

the location of its center of mass, and θ, its orientation measured counter-clockwise with repect to

the positive x-axis. For the manipulator the state is θ1, the orientation of the first link measured

counter-clockwise with repect to the positive x-axis, and θ2, the orientation of the second link

measured counter-clockwise relative to the major axis of the first link.

on the integration interval. In Section 3.1 we compare the operation of the method

introduced here to naive endpoint checking algorithms, establishing the basic com-

petency of the algorithm. This places our algorithm among the ranks of other

so-called “correct” algorithms, which by using interpolations are guaranteed to

detect multiple events [Shampine et al. 1991; Park and Barton 1996; Bahl and Lin-

ninger 2001; Pritsker and O’Reilly 1999]. In Section 3.2 we look at an example

with a model singularity. Indeed it is this type of situation which the method was

designed to address. We compare the robustness of our extrapolation method to

the interpolation-based methods. Our algorithm is clearly superior in this regard.

Finally in Section 3.3 we compare the computational efficiency of our algorithm to

that of the interpolation-based algorithms. Because interpolation based methods

crash in situations with model singularities, which would prevent us from collect-

ing meaningful computational statistics, this example is singularity free. Since any

root finding scheme can be used with our method, we use implementations of both

algorithms that are as similar as possible – highlighting their intrinsic differences.

Finally, note that regardless of the method used it does not make sense to locate

the event with significantly greater accuracy than that which was used to generate

the state estimates (see Shampine et al. [1991]). For this reason we do not compare

the accuracy of any methods in pinpointing the location of events.
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Fig. 7. Simulations of the mobile robot in Example 1. Dots indicate integrator output, while the

solid lines connecting them are purely for visualization. (left) The endpoint checking technique

fails to detect the collision; (right) the extrapolation based method reduces its step size as it

approaches the event surface and properly detects the event.

3.1 Example 1: Reliability in Detecting Multiple Events

Consider the nonholonomic autonomous vehicle trying to navigate an indoor envi-

ronment shown in Figure 6 (left). Assuming it is not in contact with a wall, the

nominal kinematic equations are



ẋ

ẏ

θ̇


 =




cos(θ) 0

sin(θ) 0

0 1





 u1

u2


 (22)

where the inputs are the forward velocity, u1 = 1, and the turning rate, u2 = 0 if

x < 1.75 and u2 = 0.2 if x ≥ 1.75. Note that the inputs were selected so that the

true solution could be easily calculated (a straight path followed by an arc). The

goal here is to verify that the robot does not collide with the obstacles. For the

sake of simplicity, we ignore the physical size of the robot and simply think of it as

a point. Thus the collision event(s) for the simulation are given by the equations

of the walls

((y − 0.5 ≥ 0)
∨

(x− 3.5 ≥ 0))
∨

((−y − 0.4 ≥ 0)
∧

(2.8− x ≥ 0)). (23)

For the sake of comparison, in addition to implementing our extrapolation based

method, we implemented a Runge-Kutta variable step size integrator, which used

simple endpoint checking to detect events. This method represents the entire class

of naive, but commonly used, endpoint checking approaches. Both our extrapola-

tion method and the Runge-Kutta were fourth order methods, using a variable step

size and a desired relative truncation error tolerance of 10−4. Figure 7 (left) displays
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Table I. A Comparison of the Number of Events Properly Detected Using the

Naive Endpoint Checking Algorithm vs. the Extrapolation Method.

Method used End-point Extrapolation

Events detected 32% 100%

a situation for which the endpoint checking algorithm fails. Integration points are

computed which happen to land just outside the event surface. Thus the simulator

detects no collision when in fact the robot has collided with the walls, near the

corner (x = 2.8, y = −0.4). Figure 7 (right) illustrates the method presented in

this paper. Observe how the integrator takes smaller step sizes as it approaches

the event surface. Note that in this example the gain, γ = 0.5, was selected in such

a way as to produce a very gradual slowdown, for the purposes of illustrating the

technique. In practice, since the guards are linear, a gain of γ = 0 could have been

used to force fast convergence.

This experiment was repeated 100 times, with small (radius of 0.05) uniform

random perturbations of the initial conditions. The perturbations were such that

all initial conditions should produce a collision (as determined by an analytical

solution) by a small margin. Table I summarizes the outcome. The results support

the earlier statement that the extrapolation method lies in the class of “correct”

methods, such as Park and Barton [1996] or Shampine et al. [1991], or commercial

packages such as Arena [2004] , which are guaranteed to detect an even number of

sign changes in the event function.

3.2 Example 2: Robustness to Model Singularities

Consider the planar two link manipulator, as shown in Figure 6 (right), with the

kinematic equations

 θ̇1

θ̇2


 =


 ω1

ω2


 . (24)

Control of such systems is often done in a hierarchical manner where desired (x, y)

positions for the end effector are fed to the motor controller from a high level

planner and the model is required to calculate θ1 and θ2 to achieve these positions.

If the length of the proximal link is l1 and the distal link is l2 where l1 > l2, the

appropriate inverse kinematic relations to compute θ1 and θ2 as a function of (x, y)
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Fig. 8. Simulations of the two link robotic manipulator from Example 2: (left) interpolation-

based methods cannot be used since the vector field is ill-defined out side the workspace; (right)

the extrapolation based method approaches the surface asymptotically without ever requiring a

function evaluation outside the workspace.

are

θ1 = tan−1(y/x)− cos−1

(
x2 + y2 + l21 − l22

2l1
√

x2 + y2

)
(25)

θ2 = tan−1

[
y − l1 sin(θ1)
x− l1 cos(θ1)

]
− θ1. (26)

Typically the trajectories are time parameterized and ω1(t) and ω2(t) are calculated

accordingly.

Note that it is possible for the high-level planner to be unaware of the specifics

of the manipulator and specify (x, y) points which are outside the set of reachable

positions of the manipulator, in such cases the arguments of the cos−1 function

would fall outside of the range of [−1, 1] and the right hand-side of the differential

equation becomes ill-defined. In this case the event function would be

(
√

(x2 + y2) ≤ (l1 + l2))
∧

(
√

(x2 + y2) ≥ (l1 − l2)) (27)

with x = l1 cos θ1 + l2 cos(θ1 + θ2), y = l1 sin θ1 + l2 sin(θ1 + θ2). Figure 8 displays a

simulation of the two-link manipulator attempting to track a reference trajectory,

which is a straight line in Cartesian space. In this case the reference trajectory

eventually falls outside the workspace of the manipulator, where the right-hand

side of the differential equation becomes complex.

A fourth order predictor-correct integrator, with variable step size was used.

The desired relative truncation error was 10−4. For the sake of comparison we

implemented our extrapolation method as well as an interpolation-based event de-

tection method based on the natural corrector interpolant similar in spirit to that
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of Shampine et al. [1991] or Park and Barton [1996]. As indicated in Figure 8 (left),

the interpolation-based simulator generates a point near the edge of the workspace

and its next point falls outside the workspace. Because the vector field is ill-defined

there, it is unable to correctly compute this new point, nor is it able to activate its

root finding algorithm since the construction of the interpolant requires an initial

point on each side of the event surface. The output of our algorithm is shown in

Figure 8 (right). Successively smaller steps are taken as the state approaches the

boundary of the workspace. This experiment was repeated 100 times with random

initial conditions and in each case the results were the same. It is important to

note that the while the various interpolation-based algorithms differ from the one

we implemented in how they compute the roots of the interpolation polynomial,

they all share the same basic underlying algorithm and therefore would all fail in a

similar manner in the presence of a model singularity.

3.3 Example 3: Computational Efficiency

In this section we run our extrapolation-based event detection method and the

generic interpolation-based method, on a larger example problem in order to assess

the computational efficiency of our algorithm. It is important to emphasize that,

while both methods employ an integration scheme and a root-finding scheme, nei-

ther the interpolation-based nor our extrapolation-based method are tied to specific

such algorithms. Indeed the extrapolation method can be used with any predictor-

corrector method regardless of order, and it treats root-finding as a “black box”

subroutine. Therefore, any method to determine the roots – such as the highly ef-

ficient “root exclusion test” used in Park and Barton [1996] – can be incorporated

with either method. Our goal is to ascertain the quantity of additional computation

time intrinsic to the extrapolation method. Again, both methods were implemented

using fourth order predictor-corrector formula in Matlab with a relative truncation

error tolerance of 10−4, and each used Matlab’s built-in root finding scheme roots.

We chose an event detection benchmark problem which possess no model singu-

larities to prevent the interpolation-based methods from crashing during the exper-

iment. The “bumper cars” problem consists of M vehicles with dynamic equations

such as eq. (7) in a two-dimensional box (see Figure 9). We assume there are 20

cars, with radius r = 0.1 and the dimensions of the box is 10 × 10. A collision

between two cars or a car and the wall constitutes an event. The post-collision
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Fig. 9. Example 3: The bumper car problem.

Table II. A Comparison of the Average Computation Times of the Standard In-

terpolation Method and the Extrapolation Method Introduced Here. Both Meth-

ods Were Run on the “Bumper Car” Example Problem 100 Times with Random

Initial Conditions on a 1GHz PC.

Method used Interpolation Extrapolation

Computation Time 0.3106 sec 0.3330 sec

velocities are computed assuming the collisions are inelastic and the coefficient of

restitution is 0.9.

Again, 100 simulations were run, each with randomly generated initial conditions,

using Matlab version 6.1 on a 1 GHz PC. The algorithms simulated 100 seconds of

system dynamics. From Table II it appears that the price one pays for the added

robustness of the extrapolation based method is that it requires, on average, 7.2%

more computation time than the interpolation based method, for this example.

Recall that the major differences between the methods was:

1. reordering of the steps of the algorithms;

2. constructing extrapolation vs. interpolation polynomials; and

3. any additional integration steps required by the extrapolation due to the use

of overly conservative small step sizes in the neighborhood of event surfaces.

Clearly item 1 has no effect on computation time. The difference due to item

2 is easily measured and is repeatable. By examining the cost of constructing

each type of polynomial, clearly the major additional computation is in computing
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the constant γ which ensures that the event surface is conservatively approached

from one side. There is no equivalent quantity to be computed for the interpolation

method. This accounts for approximately 6 floating point operations per integration

step. The percentage of total computation time that accounts for per iteration

depends on the cost of the function evaluations associated with the derivatives and

event functions. In this example, the derivative functions and event functions were

fairly simple, although there were many of them. By examining the average cost per

iteration, we found that in this example the computation of γ accounted for 96% of

the overall 7.2% discrepancy in computation time. The impact of item 3 is actually

quite small, accounting for the remaining 4% of additional computation. This is

explained by the fact that events are typically quite “rare,” accounting for only

0.02% of all integration steps. We feel that this example is actually a conservative

benchmark for assessing the efficiency of the method. Examples with more complex

derivative functions or less frequent events would fare even better.

4. CONCLUSION

One of the most important facets of numerically simulating nonsmooth differential

equations (a.k.a. hybrid or switched systems) is detecting, locating and properly

handling discontinuities in the derivative of the state (a.k.a. state events). These

events are signaled by the zeros of an event function. Since the underlying “solu-

tion” to the differential equations is not known analytically, but rather values of the

state are generated at discrete points in time, it can be very difficult to properly

detect the occurrence of such an event when there are an even number of zero cross-

ings in a particular integration interval. Only a small subset of all event detection

techniques guarantee that all events will be detected – these methods are referred

to here as interpolation-based methods. However, even these otherwise successful

methods can fail in the neighborhood of a model singularity – a region of the state

space where the the derivative function is undefined. Such events have been re-

ferred to as unilateral events elsewhere in the literature. Indeed, often the reason

non-smooth models are employed is that no single expression for the derivative is

valid in all operating regimes. Systems with model singularities include logic-based

feedback control systems, phase transition systems, and chemical kinetics, to name

a few. Interpolation methods fail because they require a derivative evaluation at

the endpoint – which potentially lies inside the singular region.
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The event detection algorithm described here overcomes this limitation using an

approach inspired by feedback control theory. A carefully constructed extrapola-

tion polynomial is used to select the integration step size by checking for potential

future events, avoiding the need to evaluate the differential equation in potentially

singular regions. The types of event functions for which the step size can be com-

puted exactly are functions with Taylor series expansions of finite length. This

includes polynomial or linear time- and state-dependent event functions. In the

case of arbitrary nonlinear functions there are two options. The nonlinear guards

can be converted to linear form by appending an extra state variable (this requires

symbolic manipulation capabilities); or an approximate linearization can be numer-

ically computed using the first few terms of the inverse Taylor series expansion. In

the case of guards which are exactly linearizable, it is possible to locate every event

with accuracy on the same order as the integration accuracy. The user may specify

on which side of the event surface the final value of the state should be computed.

Three examples are used to demonstrate the effectiveness and computational cost

of the method. First we demonstrate that the extrapolation method is capable of

detecting even numbers of event function zero crossings, a common shortcoming

of some event detection methods. In this regard our extrapolation method is on

equal footing with interpolation-based methods, lauded for their ability to prop-

erly handle this situation. Next we compare the extrapolation and interpolation

methods in their ability to properly handle events near model singularities. The

extrapolation method is clearly superior in this regard. It is this basic defect of in-

terpolation methods that inspired the development of the new approach advocated

here. Finally, we carefully benchmark the performance of our method compar-

ing it to interpolation-based methods. In exchange for increased robustness, our

method only requires a modest increase in computation time (approximately 7.2%

more computation time for the example considered). Most of the discrepancy is

accounted for by the added computation required to construct the extrapolation

polynomial and the conservatism in step size selection required to avoid singulari-

ties. We feel that the chosen example actually understates the performance of the

algorithm.
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